The binary locating-dominating number of some convex polytopes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying and Locating- Dominating Codes in Binary Hamming Spaces Identifying and Locating-Dominating Codes in Binary Hamming Spaces

Acknowledgements First of all I want to thank my supervisor Professor Iiro Honkala for his continuous support, and patience when long breaks in research took place. Many discussions with Iiro, his collaboration, suggestions for research topics, and careful proofreading made this work possible. I also want to thank Dr. Tero Laihonen for many inspiring discussions, suggestions for research topics...

متن کامل

On Locating-Dominating Codes in Binary Hamming Spaces

Let F = {0, 1} denote the binary field and F the n-dimensional Cartesian product of it. A code is a subset of F. The elements of F (resp. a code) are called words (resp. codewords) and the Hamming distance d(x, y) between two words x, y ∈ F is the number of coordinate positions in which they differ. The Hamming weight w(x) of a word x ∈ F is the number of 1’s in x. The minimum distance of a cod...

متن کامل

Estimating the Number of Vertices in Convex Polytopes

Estimating the number of vertices of a convex polytope defined by a system of linear inequalities is crucial for bounding the run-time of exact generation methods. It is not easy to achieve a good estimator, since this problem belongs to the #P complexity class. In this paper we present two randomized algorithms for estimating the number of vertices in polytopes. The first is based on the well-...

متن کامل

Some Aspects of the Combinatorial Theory of Convex Polytopes

We start with a theorem of Perles on the k-skeleton, Skel k (P) (faces of dimension k) of d-polytopes P with d+b vertices for large d. The theorem says that for xed b and d, if d is suuciently large, then Skel k (P) is the k-skeleton of a pyramid over a (d ? 1)-dimensional polytope. Therefore the number of combinatorially distinct k-skeleta of d-polytopes with d + b vertices is bounded by a fun...

متن کامل

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ars Mathematica Contemporanea

سال: 2017

ISSN: 1855-3974,1855-3966

DOI: 10.26493/1855-3974.973.479